Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks

نویسندگان

  • Ester Bernadó-Mansilla
  • Josep Maria Garrell i Guiu
چکیده

Recently, Learning Classifier Systems (LCS) and particularly XCS have arisen as promising methods for classification tasks and data mining. This paper investigates two models of accuracy-based learning classifier systems on different types of classification problems. Departing from XCS, we analyze the evolution of a complete action map as a knowledge representation. We propose an alternative, UCS, which evolves a best action map more efficiently. We also investigate how the fitness pressure guides the search towards accurate classifiers. While XCS bases fitness on a reinforcement learning scheme, UCS defines fitness from a supervised learning scheme. We find significant differences in how the fitness pressure leads towards accuracy, and suggest the use of a supervised approach specially for multi-class problems and problems with unbalanced classes. We also investigate the complexity factors which arise in each type of accuracy-based LCS. We provide a model on the learning complexity of LCS which is based on the representative examples given to the system. The results and observations are also extended to a set of real world classification problems, where accuracy-based LCS are shown to perform competitively with respect to other learning algorithms. The work presents an extended analysis of accuracy-based LCS, gives insight into the understanding of the LCS dynamics, and suggests open issues for further improvement of LCS on classification tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary computation

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2003